publications
publications by categories in reversed chronological order. generated by jekyll-scholar.
2021
-
APJSThe Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy ClustersHilton, M., Sifón, C., Naess, S., Madhavacheril, M., Oguri, M., Rozo, E., Rykoff, E., Abbott, T. M. C., Adhikari, S., Aguena, M., Aiola, S., Allam, S., Amodeo, S., Amon, A., Annis, J., Ansarinejad, B., Aros-Bunster, C., Austermann, J. E., Avila, S., Bacon, D., Battaglia, N., Beall, J. A., Becker, D. T., Bernstein, G. M., Bertin, E., Bhandarkar, T., Bhargava, S., Bond, J. R., Brooks, D., Burke, D. L., Calabrese, E., Kind, M. Carrasco, Carretero, J., Choi, S. K., Choi, A., Conselice, C., Costa, L. N., Costanzi, M., Crichton, D., Crowley, K. T., Dünner, R., Denison, E. V., Devlin, M. J., Dicker, S. R., Diehl, H. T., Dietrich, J. P., Doel, P., Duff, S. M., Duivenvoorden, A. J., Dunkley, J., Everett, S., Ferraro, S., Ferrero, I., Ferté, A., Flaugher, B., Frieman, J., Gallardo, P. A., GarcÃa-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giles, P., Golec, J. E., Gralla, M. B., Grandis, S., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Han, D., Hartley, W. G., Hasselfield, M., Hill, J. C., Hilton, G. C., Hincks, A. D., Hinton, S. R., Ho, S-P. P., Honscheid, K., Hoyle, B., Hubmayr, J., Huffenberger, K. M., Hughes, J. P., Jaelani, A. T., Jain, B., James, D. J., Jeltema, T., Kent, S., Knowles, K., Koopman, B. J., Kuehn, K., Lahav, O., Lima, M., Lin, Y-T., Lokken, M., Loubser, S. I., MacCrann, N., Maia, M. A. G., Marriage, T. A., Martin, J., McMahon, J., Melchior, P., Menanteau, F., Miquel, R., Miyatake, H., Moodley, K., Morgan, R., Mroczkowski, T., Nati, F., Newburgh, L. B., Niemack, M. D., Nishizawa, A. J., Ogando, R. L. C., Orlowski-Scherer, J., Page, L. A., Palmese, A., Partridge, B., Paz-Chinchón, F., Phakathi, P., Plazas, A. A., Robertson, N. C., Romer, A. K., Rosell, A. Carnero, Salatino, M., Sanchez, E., Schaan, E., Schillaci, A., Sehgal, N., Serrano, S., Shin, T., Simon, S. M., Smith, M., Soares-Santos, M., Spergel, D. N., Staggs, S. T., Storer, E. R., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Trac, H., Ullom, J. N., Vale, L. R., Lanen, J. Van, Vavagiakis, E. M., Vicente, J. De, Wilkinson, R. D., Wollack, E. J., Xu, Z., and Zhang, Y.The Astrophysical Journal Supplement Series Mar 2021
We present a catalog of 4195 optically confirmed Sunyaev-Zel’dovich (SZ) selected galaxy clusters detected with signal-to-noise > 4 in 13,211 deg^2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 < z < 1.91 (median z = 0.52). The catalog contains 222 z > 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ-signal vs. mass scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 x 10^{14} MSun, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio > 5 in maps filtered at an angular scale of 2.4’. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ-signal mass-scaling relation, such as the Dark Energy Survey (4566 deg^2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg^2), and the Kilo Degree Survey (825 deg^2). We highlight some noteworthy objects in the sample, including potentially projected systems; clusters with strong lensing features; clusters with active central galaxies or star formation; and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses, and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr.
-
arxivThe Atacama Cosmology Telescope: A search for Planet 9Naess, Sigurd, Aiola, Simone, Battaglia, Nick, Bond, Richard J., Calabrese, Erminia, Choi, Steve K., Cothard, Nicholas F., Halpern, Mark, Hill, J. Colin, Koopman, Brian J., Devlin, Mark, McMahon, Jeff, Dicker, Simon, Duivenvoorden, Adriaan J., Dunkley, Jo, Engelen, Alexander Van, Fanfani, Valentina, Ferraro, Simone, Gallardo, Patricio A., Guan, Yilun, Han, Dongwon, Hasselfield, Matthew, Hincks, Adam D., Huffenberger, Kevin, Kosowsky, Arthur B., Louis, Thibaut, Macinnis, Amanda, Madhavacheril, Mathew S., Nati, Federico, Niemack, Michael D., Page, Lyman, Salatino, Maria, Schaan, Emmanuel, Orlowski-Scherer, John, Schillaci, Alessandro, Schmitt, Benjamin, Sehgal, Neelima, Sifón, Cristóbal, Staggs, Suzanne, and Wollack, Edward J.arXiv Apr 2021
We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015–2019), 150 GHz (2013–2019) and 229 GHz (2017–2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 AU to 775 AU. The search covers the whole 18,000 square degrees of the ACT survey, though a slightly deeper search is performed for the parts of the sky consistent with Planet 9’s expected orbital inclination. No significant detections are found, which is used to place limits on the mm-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9 respectively. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown Solar system object within our survey area brighter than 4–12 mJy (depending on position) at 150 GHz with current distance 300 \text{ AU} < r < 600 \text{ AU} and heliocentric angular velocity 1.5’/\text{yr} < v ⋅\frac{500 \text{ AU}}{r} < 2.3’\text{yr}, corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 AU, reaching 5–15 mJy by 1500 AU.
-
AAPStrong detection of the CMB lensing and galaxy weak lensing cross-correlation from ACT-DR4, Planck Legacy, and KiDS-1000Robertson, Naomi Clare, Alonso, David, Harnois-Déraps, Joachim, Darwish, Omar, Kannawadi, Arun, Amon, Alexandra, Asgari, Marika, Bilicki, MacIej, Calabrese, Erminia, Choi, Steve K., Devlin, Mark J., Dunkley, Jo, Dvornik, Andrej, Erben, Thomas, Ferraro, Simone, Fortuna, Maria Cristina, Giblin, Benjamin, Han, Dongwon, Heymans, Catherine, Hildebrandt, Hendrik, Hill, J. Colin, Hilton, Matt, Ho, Shuay Pwu P., Hoekstra, Henk, Hubmayr, Johannes, Hughes, John P., Joachimi, Benjamin, Joudaki, Shahab, Knowles, Kenda, Kuijken, Konrad, Madhavacheril, Mathew S., Moodley, Kavilan, Miller, Lance, Namikawa, Toshiya, Nati, Federico, Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Schaan, Emmanuel, Schillaci, Alessandro, Schneider, Peter, Sehgal, Neelima, Sherwin, Blake D., Sifón, Cristóbal, Staggs, Suzanne T., Tröster, Tilman, Engelen, Alexander Van, Valentijn, Edwin, Wollack, Edward J., Wright, Angus H., and Xu, ZhileiAstronomy and Astrophysics May 2021
We measured the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We used two samples of source galaxies, selected with photometric redshifts, (0.1 < zB < 1.2) and (1.2 < zB < 2), which produce a combined detection significance of the CMB lensing and weak galaxy lensing cross-spectrum of 7.7σ. With the lower redshift galaxy sample, for which the cross-correlation was detected at a significance of 5.3σ, we present joint cosmological constraints on the matter density parameter, ωm, and the matter fluctuation amplitude parameter, σ8, marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration as well as the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat ΛCDM cosmological models from both Planck and KiDS-1000. We demonstrate the capacity of CMB weak lensing cross-correlations to set constraints on either the redshift or shear calibration by analysing a previously unused high-redshift KiDS galaxy sample (1.2 < zB < 2), with the cross-correlation detected at a significance of 7σ. This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys.
-
APJSThe Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data AccessMallaby-Kay, Maya, Atkins, Zachary, Aiola, Simone, Amodeo, Stefania, Austermann, Jason E., Beall, James A., Becker, Daniel T., Bond, J. Richard, Calabrese, Erminia, Chesmore, Grace E., Choi, Steve K., Crowley, Kevin T., Darwish, Omar, Denison, Edward V., Devlin, Mark J., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Ferraro, Simone, Fichman, Kyra, Gallardo, Patricio A., Golec, Joseph E., Guan, Yilun, Han, Dongwon, Hasselfield, Matthew, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hložek, Renée, Hubmayr, Johannes, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., Louis, Thibaut, MacInnis, Amanda, Madhavacheril, Mathew S., McMahon, Jeff, Moodley, Kavilan, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Newburgh, Laura B., Nibarger, John P., Niemack, Michael D., Page, Lyman A., Salatino, Maria, Schaan, Emmanuel, Schillaci, Alessandro, Sehgal, Neelima, Sherwin, Blake D., Sifón, Cristóbal, Simon, Sara, Staggs, Suzanne T., Storer, Emilie R., Ullom, Joel N., Engelen, Alexander Van, Lanen, Jeff Van, Vale, Leila R., Wollack, Edward J., Xu, Zhilei, Mallaby-Kay, Maya, Atkins, Zachary, Aiola, Simone, Amodeo, Stefania, Austermann, Jason E., Beall, James A., Becker, Daniel T., Bond, J. Richard, Calabrese, Erminia, Chesmore, Grace E., Choi, Steve K., Crowley, Kevin T., Darwish, Omar, Denison, Edward V., Devlin, Mark J., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Ferraro, Simone, Fichman, Kyra, Gallardo, Patricio A., Golec, Joseph E., Guan, Yilun, Han, Dongwon, Hasselfield, Matthew, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hložek, Renée, Hubmayr, Johannes, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., Louis, Thibaut, MacInnis, Amanda, Madhavacheril, Mathew S., McMahon, Jeff, Moodley, Kavilan, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Newburgh, Laura B., Nibarger, John P., Niemack, Michael D., Page, Lyman A., Salatino, Maria, Schaan, Emmanuel, Schillaci, Alessandro, Sehgal, Neelima, Sherwin, Blake D., Sifón, Cristóbal, Simon, Sara, Staggs, Suzanne T., Storer, Emilie R., Ullom, Joel N., Engelen, Alexander Van, Lanen, Jeff Van, Vale, Leila R., Wollack, Edward J., and Xu, ZhileiAstrophysical Journal, Supplement Jul 2021
-
AAPAtacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey: Sunyaev-Zeldovich effect confirmation of MaDCoWS candidates using ACTOrlowski-Scherer, John, Mascolo, Luca Di, Bhandarkar, Tanay, Manduca, Alex, Mroczkowski, Tony, Amodeo, Stefania, Battaglia, Nick, Brodwin, Mark, Choi, Steve K., Devlin, Mark, Dicker, Simon, Dunkley, Jo, Gonzalez, Anthony H., Han, Dongwon, Hilton, Matt, Huffenberger, Kevin, Hughes, John P., MacInnis, Amanda, Knowles, Kenda, Koopman, Brian J., Lowe, Ian, Moodley, Kavilan, Nati, Federico, Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Romero, Charles, Salatino, Maria, Schillaci, Alessandro, Sehgal, Neelima, Sifón, Cristóbal, Staggs, Suzanne, Stanford, Spencer A., Thornton, Robert, Vavagiakis, Eve M., Wollack, Edward J., Xu, Zhilei, and Zhu, NingfengAstronomy and Astrophysics Sep 2021
Context. Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2839 significant galaxy overdensities at redshifts 0.7-1.5, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area millimeter-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ)-selected clusters as part of its Data Release 5 (DR5). Aims. We aim to verify and characterize MaDCoWS clusters using measurements of, or limits on, their thermal SZ effect signatures. We also use these detections to establish the scaling relation between SZ mass and the MaDCoWS-defined richness. Methods. Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We do this by comparing cataloged detections and extracting individual and stacked SZ signals from the MaDCoWS cluster locations. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel, and ACT 224 GHz data to assess the impact of contaminating sources on the SZ signals from both ACT and MaDCoWS clusters. We use a hierarchical Bayesian model to fit the mass-richness scaling relation, allowing for clusters to be drawn from two populations: one, a Gaussian centered on the mass-richness relation, and the other, a Gaussian centered on zero SZ signal. Results. We find that MaDCoWS clusters have submillimeter contamination that is consistent with a gray-body spectrum, while the ACT clusters are consistent with no submillimeter emission on average. Additionally, the intrinsic radio intensities of ACT clusters are lower than those of MaDCoWS clusters, even when the ACT clusters are restricted to the same redshift range as the MaDCoWS clusters. We find the best-fit ACT SZ mass versus MaDCoWS richness scaling relation has a slope of p1 = 1.84-0.14+0.15, where the slope is defined as M λ15p1 and λ15 is the richness. We also find that the ACT SZ signals for a significant fraction (∼57%) of the MaDCoWS sample can statistically be described as being drawn from a noise-like distribution, indicating that the candidates are possibly dominated by low-mass and unvirialized systems that are below the mass limit of the ACT sample. Further, we note that a large portion of the optically confirmed ACT clusters located in the same volume of the sky as MaDCoWS are not selected by MaDCoWS, indicating that the MaDCoWS sample is not complete with respect to SZ selection. Finally, we find that the radio loud fraction of MaDCoWS clusters increases with richness, while we find no evidence that the submillimeter emission of the MaDCoWS clusters evolves with richness. Conclusions. We conclude that the original MaDCoWS selection function is not well defined and, as such, reiterate the MaDCoWS collaboration’s recommendation that the sample is suited for probing cluster and galaxy evolution, but not cosmological analyses. We find a best-fit mass-richness relation slope that agrees with the published MaDCoWS preliminary results. Additionally, we find that while the approximate level of infill of the ACT and MaDCoWS cluster SZ signals (1-2%) is subdominant to other sources of uncertainty for current generation experiments, characterizing and removing this bias will be critical for next-generation experiments hoping to constrain cluster masses at the sub-percent level.
-
PRDAtacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel’dovich measurements from BOSS CMASS and LOWZ halosSchaan, Emmanuel, Ferraro, Simone, Amodeo, Stefania, Battaglia, Nicholas, Aiola, Simone, Austermann, Jason E., Beall, James A., Bean, Rachel, Becker, Daniel T., Bond, Richard J., Calabrese, Erminia, Calafut, Victoria, Choi, Steve K., Denison, Edward V., Devlin, Mark J., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Dünner, Rolando, Gallardo, Patricio A., Guan, Yilun, Han, Dongwon, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hložek, Renée, Hubmayr, Johannes, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., MacInnis, Amanda, McMahon, Jeff, Madhavacheril, Mathew S., Moodley, Kavilan, Mroczkowski, Tony, Naess, Sigurd, Nati, Federico, Newburgh, Laura B., Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Salatino, Maria, Sehgal, Neelima, Schillaci, Alessandro, Sifón, Cristóbal, Smith, Kendrick M., Spergel, David N., Staggs, Suzanne, Storer, Emilie R., Trac, Hy, Ullom, Joel N., Lanen, Jeff Van, Vale, Leila R., Engelen, Alexander, Magaña, Mariana Vargas, Vavagiakis, Eve M., Wollack, Edward J., and Xu, ZhileiPhysical Review D Mar 2021
-
PRDDeep learning simulations of the microwave skyHan, Dongwon, Sehgal, Neelima, and Villaescusa-Navarro, FranciscoPhysical Review D Dec 2021
-
arxivMitigating Foreground Bias to the CMB Lensing Power Spectrum for a CMB-HD SurveyHan, Dongwon, and Sehgal, NeelimaarXiv e-prints Dec 2021
A promising way to measure the distribution of matter on small scales (k  10 hMpc^-1) is to use gravitational lensing of the Cosmic Microwave Background (CMB). CMB-HD, a proposed high-resolution, low-noise millimeter survey over half the sky, can measure the CMB lensing auto spectrum on such small scales enabling measurements that can distinguish between a cold dark matter (CDM) model and alternative models designed to solve problems with CDM on small scales. However, extragalactic foregrounds can bias the CMB lensing auto spectrum if left untreated. We present a foreground mitigation strategy that provides a path to reduce the bias from two of the most dominant foregrounds, the thermal Sunyaev-Zel’dovich effect (tSZ) and the Cosmic Infrared Background (CIB). Given the level of realism included in our analysis, we find that the tSZ alone and the CIB alone bias the lensing auto spectrum by 0.6 sigma and 1.1 sigma respectively, in the lensing multipole range of L in [5000,20000] for a CMB-HD survey; combined these foregrounds yield a bias of only 1.3 sigma. Including these foregrounds, we also find that a CMB-HD survey can distinguish between a CDM model and a 10^-22 eV FDM model at the 5 sigma level. These results provide an important step in demonstrating that foreground contamination can be sufficiently reduced to enable a robust measurement of the small-scale matter power spectrum with CMB-HD.
-
JCAPThe Atacama Cosmology Telescope: delensed power spectra and parametersHan, Dongwon, Sehgal, Neelima, MacInnis, Amanda, Engelen, Alexander, Sherwin, Blake D., Madhavacheril, Mathew S., Aiola, Simone, Battaglia, Nicholas, Beall, James A., Becker, Daniel T., Calabrese, Erminia, Choi, Steve K., Darwish, Omar, Denison, Edward V., Devlin, Mark J., Dunkley, Jo, Ferraro, Simone, Fox, Anna E., Hasselfield, Matthew, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hložek, Renée, Hubmayr, Johannes, Hughes, John P., Kosowsky, Arthur, Lanen, Jeff Van, Louis, Thibaut, Moodley, Kavilan, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Nibarger, John P., Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Qu, Frank J., Schillaci, Alessandro, Spergel, David N., Staggs, Suzanne, Storer, Emilie, and Wollack, Edward J.Journal of Cosmology and Astroparticle Physics Jan 2021
-
PRDAtacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel’dovich measurementsAmodeo, Stefania, Battaglia, Nicholas, Schaan, Emmanuel, Ferraro, Simone, Moser, Emily, Aiola, Simone, Austermann, Jason E, Beall, James A, Bean, Rachel, Becker, Daniel T, Bond, Richard J, Calabrese, Erminia, Calafut, Victoria, Choi, Steve K, Denison, Edward V, Devlin, Mark, Duff, Shannon M, Duivenvoorden, Adriaan J, Dunkley, Jo, Dünner, Rolando, Gallardo, Patricio A, Hall, Kirsten R, Han, Dongwon, Hill, J Colin, Hilton, Gene C, Hilton, Matt, Hložek, Renée, Hubmayr, Johannes, Huffenberger, Kevin M, Hughes, John P, Koopman, Brian J, MacInnis, Amanda, McMahon, Jeff, Madhavacheril, Mathew S, Moodley, Kavilan, Mroczkowski, Tony, Naess, Sigurd, Nati, Federico, Newburgh, Laura B, Niemack, Michael D, Page, Lyman A, Partridge, Bruce, Schillaci, Alessandro, Sehgal, Neelima, Sifón, Cristóbal, Spergel, David N, Staggs, Suzanne, Storer, Emilie R, Ullom, Joel N, Vale, Leila R, Engelen, Alexander, Lanen, Jeff Van, Vavagiakis, Eve M, Wollack, Edward J, and Xu, ZhileiPhysical Review D Mar 2021
-
MNRASThe Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxiesDarwish, Omar, Madhavacheril, Mathew S, Sherwin, Blake D, Aiola, Simone, Battaglia, Nicholas, Beall, James A, Becker, Daniel T, Bond, J Richard, Calabrese, Erminia, Choi, Steve K, Devlin, Mark J, Dunkley, Jo, Dünner, Rolando, Ferraro, Simone, Fox, Anna E, Gallardo, Patricio A, Guan, Yilun, Halpern, Mark, Han, Dongwon, Hasselfield, Matthew, Hill, J Colin, Hilton, Gene C, Hilton, Matt, Hincks, Adam D, Ho, Shuay-Pwu Patty, Hubmayr, J, Hughes, John P, Koopman, Brian J, Kosowsky, Arthur, Lanen, J Van, Louis, Thibaut, Lungu, Marius, MacInnis, Amanda, Maurin, Lo\"\ic, McMahon, Jeffrey, Moodley, Kavilan, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Newburgh, Laura, Nibarger, John P, Niemack, Michael D, Page, Lyman A, Partridge, Bruce, Qu, Frank J, Robertson, Naomi, Schillaci, Alessandro, Schmitt, Benjamin, Sehgal, Neelima, Sifón, Cristóbal, Spergel, David N, Staggs, Suzanne, Storer, Emilie, Engelen, Alexander, and Wollack, Edward JMonthly Notices of the Royal Astronomical Society Jan 2021
2020
-
PRDAtacama Cosmology Telescope: Constraints on cosmic birefringenceNamikawa, Toshiya, Guan, Yilun, Darwish, Omar, Sherwin, Blake D., Aiola, Simone, Battaglia, Nicholas, Beall, James A., Becker, Daniel T., Bond, J. Richard, Calabrese, Erminia, Chesmore, Grace E., Choi, Steve K., Devlin, Mark J., Dunkley, Joanna, Dünner, Rolando, Fox, Anna E., Gallardo, Patricio A., Gluscevic, Vera, Han, Dongwon, Hasselfield, Matthew, Hilton, Gene C., Hincks, Adam D., HloŽek, Reneé, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Koopman, Brian J., Kosowsky, Arthur, Louis, Thibaut, Lungu, Marius, Macinnis, Amanda, Madhavacheril, Mathew S., Mallaby-Kay, Maya, Maurin, Loïc, Mcmahon, Jeffrey, Moodley, Kavilan, Naess, Sigurd, Nati, Federico, Newburgh, Laura B., Nibarger, John P., Niemack, Michael D., Page, Lyman A., Qu, Frank J., Robertson, Naomi, Schillaci, Alessandro, Sehgal, Neelima, Sifón, Cristóbal, Simon, Sara M., Spergel, David N., Staggs, Suzanne T., Storer, Emilie R., Engelen, Alexander Van, Lanen, Jeff Van, and Wollack, Edward J.Physical Review D Apr 2020
We present new constraints on anisotropic birefringence of the cosmic microwave background polarization using two seasons of data from the Atacama Cosmology Telescope covering 456 square degrees of sky. The birefringence power spectrum, measured using a curved-sky quadratic estimator, is consistent with zero. Our results provide the tightest current constraint on birefringence over a range of angular scales between 5 arc minutes and 9°. We improve previous upper limits on the amplitude of a scale-invariant birefringence power spectrum by a factor of between 2 and 3. Assuming a nearly massless axion field during inflation, our result is equivalent to a 2σ upper limit on the Chern-Simons coupling constant between axions and photons of gαγ<4.0×10-2/HI, where HI is the inflationary Hubble scale.
-
APJThe Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient LightMadhavacheril, Mathew S., Sifón, Cristóbal, Battaglia, Nicholas, Aiola, Simone, Amodeo, Stefania, Austermann, Jason E., Beall, James A., Becker, Daniel T., Bond, J. Richard, Calabrese, Erminia, Choi, Steve K., Denison, Edward V., Devlin, Mark J., Dicker, Simon R., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Dünner, Rolando, Ferraro, Simone, Gallardo, Patricio A., Guan, Yilun, Han, Dongwon, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hubmayr, Johannes, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., Kosowsky, Arthur, Lanen, Jeff Van, Lee, Eunseong, Louis, Thibaut, MacInnis, Amanda, McMahon, Jeffrey, Moodley, Kavilan, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Newburgh, Laura, Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Qu, Frank J., Robertson, Naomi C., Salatino, Maria, Schaan, Emmanuel, Schillaci, Alessandro, Schmitt, Benjamin L., Sehgal, Neelima, Sherwin, Blake D., Simon, Sara M., Spergel, David N., Staggs, Suzanne, Storer, Emilie R., Ullom, Joel N., Vale, Leila R., Engelen, Alexander, Vavagiakis, Eve M., Wollack, Edward J., and Xu, ZhileiThe Astrophysical Journal Oct 2020
We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of ⟨z ⟩= 1.08. There are no current optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of 4.2 σ. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro-Frenk-White density profiles, we infer a mean mass of ⟨M_{500c}⟩= \left(1.7 \pm 0.4 \right)\times10^{14}\,\mathrm{M}_⊙. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable Universe, beyond the capabilities of optical weak lensing measurements.
-
PRDAtacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effectMadhavacheril, Mathew S., Hill, J. Colin, Næss, Sigurd, Addison, Graeme E., Aiola, Simone, Baildon, Taylor, Battaglia, Nicholas, Bean, Rachel, Bond, J. Richard, Calabrese, Erminia, Calafut, Victoria, Choi, Steve K., Darwish, Omar, Datta, Rahul, Devlin, Mark J., Dunkley, Joanna, Dünner, Rolando, Ferraro, Simone, Gallardo, Patricio A., Gluscevic, Vera, Halpern, Mark, Han, Dongwon, Hasselfield, Matthew, Hilton, Matt, Hincks, Adam D., Hložek, Renée, Ho, Shuay-Pwu Patty, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., Kosowsky, Arthur, Lokken, Martine, Louis, Thibaut, Lungu, Marius, MacInnis, Amanda, Maurin, Loïc, McMahon, Jeffrey J., Moodley, Kavilan, Nati, Federico, Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Robertson, Naomi, Sehgal, Neelima, Schaan, Emmanuel, Schillaci, Alessandro, Sherwin, Blake D., Sifón, Cristóbal, Simon, Sara M., Spergel, David N., Staggs, Suzanne T., Storer, Emilie R., Engelen, Alexander, Vavagiakis, Eve M., Wollack, Edward J., and Xu, ZhileiPhysical Review D Jul 2020
-
JCAPThe Atacama Cosmology Telescope: arcminute-resolution maps of 18 000 square degrees of the microwave sky from ACT 2008–2018 data combined with PlanckNaess, Sigurd, Aiola, Simone, Austermann, Jason E., Battaglia, Nick, Beall, James A., Becker, Daniel T., Bond, Richard J., Calabrese, Erminia, Choi, Steve K., Cothard, Nicholas F., Crowley, Kevin T., Darwish, Omar, Datta, Rahul, Denison, Edward V., Devlin, Mark, Duell, Cody J., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Dünner, Rolando, Fox, Anna E., Gallardo, Patricio A., Halpern, Mark, Han, Dongwon, Hasselfield, Matthew, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hincks, Adam D., Hložek, Renée, Ho, Shuay-Pwu Patty, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Kosowsky, Arthur B., Louis, Thibaut, Madhavacheril, Mathew S., McMahon, Jeff, Moodley, Kavilan, Nati, Federico, Nibarger, John P., Niemack, Michael D., Page, Lyman, Partridge, Bruce, Salatino, Maria, Schaan, Emmanuel, Schillaci, Alessandro, Schmitt, Benjamin, Sherwin, Blake D., Sehgal, Neelima, Sifón, Cristóbal, Spergel, David, Staggs, Suzanne, Stevens, Jason, Storer, Emilie, Ullom, Joel N., Vale, Leila R., Engelen, Alexander Van, Lanen, Jeff Van, Vavagiakis, Eve M., Wollack, Edward J., and Xu, ZhileiJournal of Cosmology and Astroparticle Physics Dec 2020
-
arxivCMB-HD: Astro2020 RFI ResponseSehgal, Neelima, Aiola, Simone, Akrami, Yashar, Basu, Kaustuv, Boylan-Kolchin, Michael, Bryan, Sean, Casey, Caitlin M, Clesse, Sébastien, Cyr-Racine, Francis-Yan, Mascolo, Luca Di, Dicker, Simon, Essinger-Hileman, Thomas, Ferraro, Simone, Fuller, George, Galitzki, Nicholas, Han, Dongwon, Hasselfield, Matthew, Holder, Gil, Jain, Bhuvnesh, Johnson, Bradley R, Johnson, Matthew, Klaassen, Pamela, MacInnis, Amanda, Madhavacheril, Mathew, Mauskopf, Philip, Meerburg, Daan, Meyers, Joel, Mroczkowski, Tony, Mukherjee, Suvodip, Münchmeyer, Moritz, Naess, Sigurd Kirkevold, Nagai, Daisuke, Namikawa, Toshiya, Newburgh, Laura, Nguyen, Nam, Niemack, Michael, Oppenheimer, Benjamin D, Pierpaoli, Elena, Schaan, Emmanuel, Sherwin, Blake, Slosar, Anže, Spergel, David, Switzer, Eric, Trivedi, Pranjal, Tsai, Yu-Dai, Engelen, Alexander, Wandelt, Benjamin, and Wollack, EdwardarXiv e-prints Feb 2020
-
JCAPThe Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHzChoi, Steve K., Hasselfield, Matthew, Ho, Shuay-Pwu Patty, Koopman, Brian, Lungu, Marius, Abitbol, Maximilian H., Addison, Graeme E., Ade, Peter A. R., Aiola, Simone, Alonso, David, Amiri, Mandana, Amodeo, Stefania, Angile, Elio, Austermann, Jason E., Baildon, Taylor, Battaglia, Nick, Beall, James A., Bean, Rachel, Becker, Daniel T., Bond, J Richard, Bruno, Sarah Marie, Calabrese, Erminia, Calafut, Victoria, Campusano, Luis E., Carrero, Felipe, Chesmore, Grace E., Cho, Hsiao-mei, Clark, Susan E., Cothard, Nicholas F., Crichton, Devin, Crowley, Kevin T., Darwish, Omar, Datta, Rahul, Denison, Edward V., Devlin, Mark J., Duell, Cody J., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Dünner, Rolando, Essinger-Hileman, Thomas, Fankhanel, Max, Ferraro, Simone, Fox, Anna E., Fuzia, Brittany, Gallardo, Patricio A., Gluscevic, Vera, Golec, Joseph E., Grace, Emily, Gralla, Megan, Guan, Yilun, Hall, Kirsten, Halpern, Mark, Han, Dongwon, Hargrave, Peter, Henderson, Shawn, Hensley, Brandon, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hincks, Adam D., Hložek, Renée, Hubmayr, Johannes, Huffenberger, Kevin M., Hughes, John P., Infante, Leopoldo, Irwin, Kent, Jackson, Rebecca, Klein, Jeff, Knowles, Kenda, Kosowsky, Arthur, Lakey, Vincent, Li, Dale, Li, Yaqiong, Li, Zack, Lokken, Martine, Louis, Thibaut, MacInnis, Amanda, Madhavacheril, Mathew, Maldonado, Felipe, Mallaby-Kay, Maya, Marsden, Danica, Maurin, Loïc, McMahon, Jeff, Menanteau, Felipe, Moodley, Kavilan, Morton, Tim, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Newburgh, Laura, Nibarger, John P., Nicola, Andrina, Niemack, Michael D., Nolta, Michael R., Orlowski-Sherer, John, Page, Lyman A., Pappas, Christine G., Partridge, Bruce, Phakathi, Phumlani, Prince, Heather, Puddu, Roberto, Qu, Frank J., Rivera, Jesus, Robertson, Naomi, Rojas, Felipe, Salatino, Maria, Schaan, Emmanuel, Schillaci, Alessandro, Schmitt, Benjamin L., Sehgal, Neelima, Sherwin, Blake D., Sierra, Carlos, Sievers, Jon, Sifon, Cristobal, Sikhosana, Precious, Simon, Sara, Spergel, David N., Staggs, Suzanne T., Stevens, Jason, Storer, Emilie, Sunder, Dhaneshwar D., Switzer, Eric R., Thorne, Ben, Thornton, Robert, Trac, Hy, Treu, Jesse, Tucker, Carole, Vale, Leila R., Engelen, Alexander Van, Lanen, Jeff Van, Vavagiakis, Eve M., Wagoner, Kasey, Wang, Yuhan, Ward, Jonathan T., Wollack, Edward J., Xu, Zhilei, Zago, Fernando, and Zhu, NingfengJournal of Cosmology and Astroparticle Physics Dec 2020
-
JCAPThe Atacama Cosmology Telescope: DR4 maps and cosmological parametersAiola, Simone, Calabrese, Erminia, Maurin, Loïc, Naess, Sigurd, Schmitt, Benjamin L., Abitbol, Maximilian H., Addison, Graeme E., Ade, Peter A. R., Alonso, David, Amiri, Mandana, Amodeo, Stefania, Angile, Elio, Austermann, Jason E., Baildon, Taylor, Battaglia, Nick, Beall, James A., Bean, Rachel, Becker, Daniel T., Bond, J Richard, Bruno, Sarah Marie, Calafut, Victoria, Campusano, Luis E., Carrero, Felipe, Chesmore, Grace E., Cho, Hsiao-mei, Choi, Steve K., Clark, Susan E., Cothard, Nicholas F., Crichton, Devin, Crowley, Kevin T., Darwish, Omar, Datta, Rahul, Denison, Edward V., Devlin, Mark J., Duell, Cody J., Duff, Shannon M., Duivenvoorden, Adriaan J., Dunkley, Jo, Dünner, Rolando, Essinger-Hileman, Thomas, Fankhanel, Max, Ferraro, Simone, Fox, Anna E., Fuzia, Brittany, Gallardo, Patricio A., Gluscevic, Vera, Golec, Joseph E., Grace, Emily, Gralla, Megan, Guan, Yilun, Hall, Kirsten, Halpern, Mark, Han, Dongwon, Hargrave, Peter, Hasselfield, Matthew, Helton, Jakob M., Henderson, Shawn, Hensley, Brandon, Hill, J. Colin, Hilton, Gene C., Hilton, Matt, Hincks, Adam D., Hložek, Renée, Ho, Shuay-Pwu Patty, Hubmayr, Johannes, Huffenberger, Kevin M., Hughes, John P., Infante, Leopoldo, Irwin, Kent, Jackson, Rebecca, Klein, Jeff, Knowles, Kenda, Koopman, Brian, Kosowsky, Arthur, Lakey, Vincent, Li, Dale, Li, Yaqiong, Li, Zack, Lokken, Martine, Louis, Thibaut, Lungu, Marius, MacInnis, Amanda, Madhavacheril, Mathew, Maldonado, Felipe, Mallaby-Kay, Maya, Marsden, Danica, McMahon, Jeff, Menanteau, Felipe, Moodley, Kavilan, Morton, Tim, Namikawa, Toshiya, Nati, Federico, Newburgh, Laura, Nibarger, John P., Nicola, Andrina, Niemack, Michael D., Nolta, Michael R., Orlowski-Sherer, John, Page, Lyman A., Pappas, Christine G., Partridge, Bruce, Phakathi, Phumlani, Pisano, Giampaolo, Prince, Heather, Puddu, Roberto, Qu, Frank J., Rivera, Jesus, Robertson, Naomi, Rojas, Felipe, Salatino, Maria, Schaan, Emmanuel, Schillaci, Alessandro, Sehgal, Neelima, Sherwin, Blake D., Sierra, Carlos, Sievers, Jon, Sifon, Cristobal, Sikhosana, Precious, Simon, Sara, Spergel, David N., Staggs, Suzanne T., Stevens, Jason, Storer, Emilie, Sunder, Dhaneshwar D., Switzer, Eric R., Thorne, Ben, Thornton, Robert, Trac, Hy, Treu, Jesse, Tucker, Carole, Vale, Leila R., Engelen, Alexander Van, Lanen, Jeff Van, Vavagiakis, Eve M., Wagoner, Kasey, Wang, Yuhan, Ward, Jonathan T., Wollack, Edward J., Xu, Zhilei, Zago, Fernando, and Zhu, NingfengJournal of Cosmology and Astroparticle Physics Dec 2020
2019
-
arxivThe Simons Observatory: Astro2020 Decadal Project WhitepaperCollaboration, The Simons Observatory, Abitbol, Maximilian H., Adachi, Shunsuke, Ade, Peter, Aguirre, James, Ahmed, Zeeshan, Aiola, Simone, Ali, Aamir, Alonso, David, Alvarez, Marcelo A., Arnold, Kam, Ashton, Peter, Atkins, Zachary, Austermann, Jason, Awan, Humna, Baccigalupi, Carlo, Baildon, Taylor, Lizancos, Anton Baleato, Barron, Darcy, Battaglia, Nick, Battye, Richard, Baxter, Eric, Bazarko, Andrew, Beall, James A., Bean, Rachel, Beck, Dominic, Beckman, Shawn, Beringue, Benjamin, Bhandarkar, Tanay, Bhimani, Sanah, Bianchini, Federico, Boada, Steven, Boettger, David, Bolliet, Boris, Bond, J. Richard, Borrill, Julian, Brown, Michael L., Bruno, Sarah Marie, Bryan, Sean, Calabrese, Erminia, Calafut, Victoria, Calisse, Paolo, Carron, Julien, Carl, Fred. M, Cayuso, Juan, Challinor, Anthony, Chesmore, Grace, Chinone, Yuji, Chluba, Jens, Cho, Hsiao-Mei Sherry, Choi, Steve, Clark, Susan, Clarke, Philip, Contaldi, Carlo, Coppi, Gabriele, Cothard, Nicholas F., Coughlin, Kevin, Coulton, Will, Crichton, Devin, Crowley, Kevin D., Crowley, Kevin T., Cukierman, Ari, D’Ewart, John M., Dünner, Rolando, Haan, Tijmen, Devlin, Mark, Dicker, Simon, Dober, Bradley, Duell, Cody J., Duff, Shannon, Duivenvoorden, Adri, Dunkley, Jo, Bouhargani, Hamza El, Errard, Josquin, Fabbian, Giulio, Feeney, Stephen, Fergusson, James, Ferraro, Simone, Fluxà , Pedro, Freese, Katherine, Frisch, Josef C., Frolov, Andrei, Fuller, George, Galitzki, Nicholas, Gallardo, Patricio A., Ghersi, Jose Tomas Galvez, Gao, Jiansong, Gawiser, Eric, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Golec, Joseph, Gordon, Sam, Gralla, Megan, Green, Daniel, Grigorian, Arpi, Groh, John, Groppi, Chris, Guan, Yilun, Gudmundsson, Jon E., Halpern, Mark, Han, Dongwon, Hargrave, Peter, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hattori, Makoto, Haynes, Victor, Hazumi, Masashi, Healy, Erin, Henderson, Shawn W., Hensley, Brandon, Hervias-Caimapo, Carlos, Hill, Charles A., Hill, J. Colin, Hilton, Gene, Hilton, Matt, Hincks, Adam D., Hinshaw, Gary, Hložek, Renée, Ho, Shirley, Ho, Shuay-Pwu Patty, Hoang, Thuong D., Hoh, Jonathan, Hotinli, Selim C., Huang, Zhiqi, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Ijjas, Anna, Ikape, Margaret, Irwin, Kent, Jaffe, Andrew H., Jain, Bhuvnesh, Jeong, Oliver, Johnson, Matthew, Kaneko, Daisuke, Karpel, Ethan D., Katayama, Nobuhiko, Keating, Brian, Keskitalo, Reijo, Kisner, Theodore, Kiuchi, Kenji, Klein, Jeff, Knowles, Kenda, Kofman, Anna, Koopman, Brian, Kosowsky, Arthur, Krachmalnicoff, Nicoletta, Kusaka, Akito, LaPlante, Phil, Lashner, Jacob, Lee, Adrian, Lee, Eunseong, Lewis, Antony, Li, Yaqiong, Li, Zack, Limon, Michele, Linder, Eric, Liu, Jia, Lopez-Caraballo, Carlos, Louis, Thibaut, Lungu, Marius, Madhavacheril, Mathew, Mak, Daisy, Maldonado, Felipe, Mani, Hamdi, Mates, Ben, Matsuda, Frederick, Maurin, Loïc, Mauskopf, Phil, May, Andrew, McCallum, Nialh, McCarrick, Heather, McKenney, Chris, McMahon, Jeff, Meerburg, P. Daniel, Mertens, James, Meyers, Joel, Miller, Amber, Mirmelstein, Mark, Moodley, Kavilan, Moore, Jenna, Munchmeyer, Moritz, Munson, Charles, Murata, Masaaki, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Navaroli, Martin, Newburgh, Laura, Nguyen, Ho Nam, Nicola, Andrina, Niemack, Mike, Nishino, Haruki, Nishinomiya, Yume, Orlowski-Scherer, John, Pagano, Luca, Partridge, Bruce, Perrotta, Francesca, Phakathi, Phumlani, Piccirillo, Lucio, Pierpaoli, Elena, Pisano, Giampaolo, Poletti, Davide, Puddu, Roberto, Puglisi, Giuseppe, Raum, Chris, Reichardt, Christian L., Remazeilles, Mathieu, Rephaeli, Yoel, Riechers, Dominik, Rojas, Felipe, Rotti, Aditya, Roy, Anirban, Sadeh, Sharon, Sakurai, Yuki, Salatino, Maria, Rao, Mayuri Sathyanarayana, Saunders, Lauren, Schaan, Emmanuel, Schmittfull, Marcel, Sehgal, Neelima, Seibert, Joseph, Seljak, Uros, Shellard, Paul, Sherwin, Blake, Shimon, Meir, Sierra, Carlos, Sievers, Jonathan, Sifon, Cristobal, Sikhosana, Precious, Silva-Feaver, Maximiliano, Simon, Sara M., Sinclair, Adrian, Smith, Kendrick, Sohn, Wuhyun, Sonka, Rita, Spergel, David, Spisak, Jacob, Staggs, Suzanne T., Stein, George, Stevens, Jason R., Stompor, Radek, Suzuki, Aritoki, Tajima, Osamu, Takakura, Satoru, Teply, Grant, Thomas, Daniel B., Thorne, Ben, Thornton, Robert, Trac, Hy, Treu, Jesse, Tsai, Calvin, Tucker, Carole, Ullom, Joel, Vagnozzi, Sunny, Engelen, Alexander, Lanen, Jeff Van, Winkle, Daniel D. Van, Vavagiakis, Eve M., Vergès, Clara, Vissers, Michael, Wagoner, Kasey, Walker, Samantha, Wang, Yuhan, Ward, Jon, Westbrook, Ben, Whitehorn, Nathan, Williams, Jason, Williams, Joel, Wollack, Edward, Xu, Zhilei, Yasini, Siavash, Young, Edward, Yu, Byeonghee, Yu, Cyndia, Zago, Fernando, Zannoni, Mario, Zhang, Hezi, Zheng, Kaiwen, Zhu, Ningfeng, and Zonca, AndreaJul 2019
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (’SO-Nominal’) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating ("Stage 3") experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4.
-
BAASScience from an Ultra-Deep, High-Resolution Millimeter-Wave SurveySehgal, Neelima, Nguyen, Ho Nam, Meyers, Joel, Munchmeyer, Moritz, Mroczkowski, Tony, Mascolo, Luca Di, Baxter, Eric, Cyr-Racine, Francis-Yan, Madhavacheril, Mathew, Beringue, Benjamin, Holder, Gil, Nagai, Daisuke, Dicker, Simon, Dvorkin, Cora, Ferraro, Simone, Fuller, George M, Gluscevic, Vera, Han, Dongwon, Jain, Bhuvnesh, Johnson, Bradley, Klaassen, Pamela, Meerburg, Daan, Motloch, Pavel, Spergel, David N, and Engelen, AlexanderBulletin of the AAS May 2019
-
BAASCMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the SkySehgal, Neelima, Aiola, Simone, Akrami, Yashar, Basu, Kaustuv, Boylan-Kolchin, Michael, Bryan, Sean, Clesse, Sébastien, Cyr-Racine, Francis-Yan, Mascolo, Luca Di, Dicker, Simon, Essinger-Hileman, Thomas, Ferraro, Simone, Fuller, George, Han, Dongwon, Hasselfield, Matthew, Holder, Gil, Jain, Bhuvnesh, Johnson, Bradley R, Johnson, Matthew, Klaassen, Pamela, Madhavacheril, Mathew, Mauskopf, Philip, Meerburg, Daan, Meyers, Joel, Mroczkowski, Tony, Münchmeyer, Moritz, Naess, Sigurd Kirkevold, Nagai, Daisuke, Namikawa, Toshiya, Newburgh, Laura, Nguyen, Nam, Niemack, Michael, Oppenheimer, Benjamin D, Pierpaoli, Elena, Schaan, Emmanuel, Slosar, Anže, Spergel, David, Switzer, Eric, Engelen, Alexander, and Wollack, EdwardIn Sep 2019
-
JCAPThe Simons Observatory: Science goals and forecastsAde, Peter, Aguirre, James, Ahmed, Zeeshan, Aiola, Simone, Ali, Aamir, Alonso, David, Alvarez, Marcelo A., Arnold, Kam, Ashton, Peter, Austermann, Jason, Awan, Humna, Baccigalupi, Carlo, Baildon, Taylor, Barron, Darcy, Battaglia, Nick, Battye, Richard, Baxter, Eric, Bazarko, Andrew, Beall, James A., Bean, Rachel, Beck, Dominic, Beckman, Shawn, Beringue, Benjamin, Bianchini, Federico, Boada, Steven, Boettger, David, Bond, J. Richard, Borrill, Julian, Brown, Michael L., Bruno, Sarah Marie, Bryan, Sean, Calabrese, Erminia, Calafut, Victoria, Calisse, Paolo, Carron, Julien, Challinor, Anthony, Chesmore, Grace, Chinone, Yuji, Chluba, Jens, Cho, Hsiao Mei Sherry, Choi, Steve, Coppi, Gabriele, Cothard, Nicholas F., Coughlin, Kevin, Crichton, Devin, Crowley, Kevin D., Crowley, Kevin T., Cukierman, Ari, D’Ewart, John M., Dünner, Rolando, Haan, Tijmen De, Devlin, Mark, Dicker, Simon, Didier, Joy, Dobbs, Matt, Dober, Bradley, Duell, Cody J., Duff, Shannon, Duivenvoorden, Adri, Dunkley, Jo, Dusatko, John, Errard, Josquin, Fabbian, Giulio, Feeney, Stephen, Ferraro, Simone, Fluxà , Pedro, Freese, Katherine, Frisch, Josef C., Frolov, Andrei, Fuller, George, Fuzia, Brittany, Galitzki, Nicholas, Gallardo, Patricio A., Ghersi, Jose Tomas Galvez, Gao, Jiansong, Gawiser, Eric, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Golec, Joseph, Gordon, Sam, Gralla, Megan, Green, Daniel, Grigorian, Arpi, Groh, John, Groppi, Chris, Guan, Yilun, Gudmundsson, Jon E., Han, Dongwon, Hargrave, Peter, Hasegawa, Masaya, Hasselfield, Matthew, Hattori, Makoto, Haynes, Victor, Hazumi, Masashi, He, Yizhou, Healy, Erin, Henderson, Shawn W., Hervias-Caimapo, Carlos, Hill, Charles A., Hill, J. Colin, Hilton, Gene, Hilton, Matt, Hincks, Adam D., Hinshaw, Gary, Hložek, Renée, Ho, Shirley, Ho, Shuay Pwu Patty, Howe, Logan, Huang, Zhiqi, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Ijjas, Anna, Ikape, Margaret, Irwin, Kent, Jaffe, Andrew H., Jain, Bhuvnesh, Jeong, Oliver, Kaneko, Daisuke, Karpel, Ethan D., Katayama, Nobuhiko, Keating, Brian, Kernasovskiy, Sarah S., Keskitalo, Reijo, Kisner, Theodore, Kiuchi, Kenji, Klein, Jeff, Knowles, Kenda, Koopman, Brian, Kosowsky, Arthur, Krachmalnicoff, Nicoletta, Kuenstner, Stephen E., Kuo, Chao Lin, Kusaka, Akito, Lashner, Jacob, Lee, Adrian, Lee, Eunseong, Leon, David, Leung, Jason S.Y., Lewis, Antony, Li, Yaqiong, Li, Zack, Limon, Michele, Linder, Eric, Lopez-Caraballo, Carlos, Louis, Thibaut, Lowry, Lindsay, Lungu, Marius, Madhavacheril, Mathew, Mak, Daisy, Maldonado, Felipe, Mani, Hamdi, Mates, Ben, Matsuda, Frederick, Maurin, Loïc, Mauskopf, Phil, May, Andrew, McCallum, Nialh, McKenney, Chris, McMahon, Jeff, Meerburg, P. Daniel, Meyers, Joel, Miller, Amber, Mirmelstein, Mark, Moodley, Kavilan, Munchmeyer, Moritz, Munson, Charles, Naess, Sigurd, Nati, Federico, Navaroli, Martin, Newburgh, Laura, Nguyen, Ho Nam, Niemack, Michael, Nishino, Haruki, Orlowski-Scherer, John, Page, Lyman, Partridge, Bruce, Peloton, Julien, Perrotta, Francesca, Piccirillo, Lucio, Pisano, Giampaolo, Poletti, Davide, Puddu, Roberto, Puglisi, Giuseppe, Raum, Chris, Reichardt, Christian L., Remazeilles, Mathieu, Rephaeli, Yoel, Riechers, Dominik, Rojas, Felipe, Roy, Anirban, Sadeh, Sharon, Sakurai, Yuki, Salatino, Maria, Rao, Mayuri Sathyanarayana, Schaan, Emmanuel, Schmittfull, Marcel, Sehgal, Neelima, Seibert, Joseph, Seljak, Uros, Sherwin, Blake, Shimon, Meir, Sierra, Carlos, Sievers, Jonathan, Sikhosana, Precious, Silva-Feaver, Maximiliano, Simon, Sara M., Sinclair, Adrian, Siritanasak, Praween, Smith, Kendrick, Smith, Stephen R., Spergel, David, Staggs, Suzanne T., Stein, George, Stevens, Jason R., Stompor, Radek, Suzuki, Aritoki, Tajima, Osamu, Takakura, Satoru, Teply, Grant, Thomas, Daniel B., Thorne, Ben, Thornton, Robert, Trac, Hy, Tsai, Calvin, Tucker, Carole, Ullom, Joel, Vagnozzi, Sunny, Engelen, Alexander Van, Lanen, Jeff Van, Winkle, Daniel D.Van, Vavagiakis, Eve M., Vergès, Clara, Vissers, Michael, Wagoner, Kasey, Walker, Samantha, Ward, Jon, Westbrook, Ben, Whitehorn, Nathan, Williams, Jason, Williams, Joel, Wollack, Edward J., Xu, Zhilei, Yu, Byeonghee, Yu, Cyndia, Zago, Fernando, Zhang, Hezi, and Zhu, NingfengJournal of Cosmology and Astroparticle Physics Feb 2019
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel’dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
2013
-
JPhysChemADissociative chemisorption of methane on Pt(110)-(1×2): effects of lattice motion on reactions at step edgesHan, Dongwon, Nave, Sven, and Jackson, BretThe journal of physical chemistry. A Sep 2013
The dissociative chemisorption of methane on Pt(110)-(1×2) is examined, with a focus on how the reaction dynamics are modified by the motion of the lattice atoms. The barriers to dissociation are found to be lowest at the step edges. The relaxation of the lattice in the presence of the dissociating molecule is found to be far more complicated than on the smooth surfaces of Pt and Ni. The dissociative sticking probabilities are computed using a full-dimensional treatment based on the reaction path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. The potential energy surface and all parameters in our model are computed from first principles. The effects of lattice motion are strong, but not significantly larger than for dissociation on smoother surfaces. Vibrational excitation of the molecule can significantly enhance reactivity, though this effect varies from mode to mode. Agreement with recent experiments with regard to the variation of reactivity with translational energy and substrate temperature is good. © 2013 American Chemical Society.